A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications.

نویسندگان

  • Minmin Zhu
  • Jing Wu
  • Zehui Du
  • Roland Yingjie Tay
  • Hongling Li
  • Barbarous Özyilmaz
  • Edwin Hang Tong Teo
چکیده

Here we report a wafer-scale graphene/P(VDF-TrFE)/graphene multilayer for light-weight, flexible and fast-switched broadband modulation applications. The P(VDF-TrFE) film not only significantly reduces the sheet resistance of graphene throughout heavy doping of ∼0.8 × 10(13) cm(-2) by nonvolatile ferroelectric dipoles, but also acts as an efficient electro-optic (EO) layer. Such multilayered structural integration with remarkable ferroelectric polarization, high transparency (>90%), low sheet resistance (∼302 Ω□(-1)), and excellent mechanic flexibility shows the potential of a flexible modulation application over a broad range of wavelengths. Moreover, the derived device also exhibits strong field-induced EO modulation even under bending and one large Pockels coefficient (∼54.3 pm V(-1)) is obtained. Finally, the graphene and ferroelectric hybrid demonstrates a fast switching time (∼2 μs) and works well below low sheet resistance level over a long time. This work gives insights into the potential of graphene and ferroelectric hybrid structures, enabling future exploration on next-generation high-performance, flexible transparent electronics and photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene based flexible electrochromic devices

Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneousl...

متن کامل

Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large ...

متن کامل

Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets

   The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...

متن کامل

Scalable fabrication of high-performance and flexible graphene strain sensors.

Graphene strain sensors have promising prospects of applications in detecting human motion. However, the shortage of graphene growth and patterning techniques has become a challenging issue hindering the application of graphene strain sensors. Therefore, we propose wafer-scale flexible strain sensors with high-performance, which can be fabricated in one-step laser scribing. The graphene films c...

متن کامل

A passively Q-switched Ho:YVO4 Laser at 2.05 μm with Graphene Saturable Absorber

We report a passively Q-switched Ho:YVO4 laser pumped at 1.94 μm with multilayer graphene as a saturable absorber. At the absorbed pump power of 9.3 W, the maximum average output power of 2.2 W was obtained in Ho:YVO4 laser with minimum pulse width of 265.2 ns and pulse repetition rate of 131.6 kHz at 2052.1 nm. In addition, a beam quality factor of M2~1.7 was measured at the maximum output lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 35  شماره 

صفحات  -

تاریخ انتشار 2015